
Layered Architecture Pipeline Architecture Service Based
Architecture Style

Event-Driven
Architecture Style

Space Based Microservices
Architecture

Deployability

Fault Tolerance

This architecture has a low
score on deployability due
to its monolithic nature.
The entire application or
website must be deployed
as one unit, making
frequent deployments
hard. Even the simplest
change requires a
complete build and
deployment of the whole
application.

This architecture has a low
score on deployability due
to its monolithic nature.
The entire application or
website must be deployed
as one unit, making
frequent deployments
hard. Even the simplest
change requires a
complete build and
deployment of the whole
application.

Service-based
architecture has a high
deployability score. Each
service is a separately
deployable unit. In
addition, it is possible to
split the user interface
and databases into
multiple deployable units.

A large number of small
deployment units enables
frequent deployments
and reduces the risk of a
single deployment, both
of which lead to a high
deployability score.

The event-driven
architecture enables the
decoupling of components
allowing for easier
deployment and updates to
individual components
without affecting the entire
system.

SBA enables easy
deployment of
components, as they
can be packaged into
independent and
self-contained units,
allowing for updates
and deployments
without impacting the
entire system.

This architecture has a
high deployability rating
as microservices enable
easy and independent
deployment of individual
services, enabling faster
updates without
impacting the entire
system.

Microservices couldn't
exist without the DevOps
revolution and the
relentless march toward
automating operational
concerns (automated
deployment, testability,
etc.)

Given the monolithic
nature, a bug (e.g.,
out-of-memory exception)
in any part of the code
risks bringing down the
entire application, leading
to low fault tolerance for
this architecture.

Pipeline architectures
don’t support fault
tolerance very well due to
monolithic deployments
and the lack of
architectural modularity. If
one part of a pipeline
architecture causes an
out-of-memory error, the
entire application unit is
impacted and crashes.

The decoupled nature of
services in SOA allows
for the isolation of
failures, ensuring that a
fault in one service does
not necessarily lead to a
complete system failure.

The overall fault
tolerance is lower than
the microservices
architecture because the
services in SOA tend to
be coarse-grained.

EDA's decoupled nature
makes it possible to build
fault-tolerant systems, as
the failure of one
component may not
necessarily lead to a
complete system failure.
Additionally, the use of
message brokers can help
ensure message delivery
even in case of temporary
component failure.

Data partitioning,
replication, and
redundancy mean that
a failure in one node
can be mitigated by
rerouting requests to
other nodes, minimizing
the impact on the
overall system.

On the other hand, the
system relies on the
eventual consistency of
data leading to a
medium score for fault
tolerance.

The decoupled nature of
microservices allows for
the isolation of failures,
ensuring that a fault in
one service does not
necessarily lead to a
complete system failure,
leading to a high score
for fault tolerance.



Layered Architecture Pipeline Architecture Service Based
Architecture Style

Event-Driven
Architecture Style

Space Based Microservices
Architecture

Scalability

Elasticity

Reliability

Once this architecture has
been deployed, little can
be done to adjust the load
and increase capacity
dynamically. The scalability
considerations are baked
in once the application has
been built and deployed.

Dealing with increasing
load typically requires
updating the code and
redeploying. Even then,
given the monolithic nature
of this architecture, the
scalability cannot grow
beyond a certain threshold.

Due to its monolithic
nature, the overall design
of this architecture bakes
in the scalability
considerations. As a
result, little can be done
post-deployment to react
to increased load.

Service-based
architecture scores a
medium on scalability
due to two factors. (1)
The coarse-grained
nature of the services,
and (2) the shared
database.

Both of these can limit
scalability under heavy
loads.

Scalability is another
strength of the event-driven
architecture. High
scalability is realized
through horizontal scaling
by programmatically adding
event processors.

With the database no
longer a bottleneck, this
architecture scales
extremely well by
leveraging in-memory
data caching and
replication. The ability
to dynamically bring up
PUs as the load
increases also
contributes to a high
scalability score for this
architecture.

Processing millions of
concurrent users is
possible using this
architecture style.

Scalability is one of the
core strengths of this
architecture, making this
one of the most scalable
architectures.

Microservices
architecture supports
both horizontal and
vertical scalability. The
granular services allow
individual services to be
scaled independently
based on their resource
requirements and
workload.

Similar to scalability, this
architecture style scores
low for elasticity, as it
cannot respond to
increased user spikes
beyond its baked-in
capacity.

Similar to scalability, this
architecture style scores
low for elasticity, as it
cannot respond to
increased user spikes
beyond its baked-in
capacity.

Similar to scalability, the
coarse-grained services
and the shared database
limit the elasticity of this
architecture.

Similar to scalability,
event-driven systems can
adapt to changes in
workload by dynamically
scaling components up or
down based on the number
of events in the queue.

Same as scalability. Similar to scalability, this
architecture scores well
for elasticity. The ability
to horizontally scale
individual services
grants the system a high
degree of elasticity.

Layered architecture is the
middle of the road for
reliability. Given its
monolithic nature, once
deployed/installed
successfully, it is likely to
avoid problems with
external dependencies
(e.g., databases), which
helps with reliability.

On the other hand, it has
low fault tolerance and a
high time to recover (due
to low deployability), which
hurts the reliability score.

A pipeline architecture is
the middle of the road for
reliability. Given its
medium scores on
modularity testability, each
stage of the pipeline can
be verified independently.

On the other hand, the
monolithic nature, a bug
(e.g., out-of-memory
exception) in any part of
the code risks bringing
down the entire
application, which hurts
the reliability score for this
architecture.

The isolation and
independent deployment
of services contribute to
the overall reliability of
the system, as it reduces
the impact of failures and
allows for easier
recovery.

By using message brokers,
EDA ensures the reliable
delivery of messages and
can even implement retries
in case of failures,
contributing to the system's
overall reliability. However,
due to its asynchronous
nature, data loss can
become an issue that
negatively impacts the
overall reliability of this
architecture.

Data redundancy and
replication mechanisms
contribute to the
system's overall
reliability, ensuring data
persistence and
availability.

As the services are
independent &
single-purpose, a failure
in one service does not
automatically lead to the
collapse of the entire
system. Moreover,
horizontally scaling each
service enable
redundancy, leading to
even higher reliability.
The high deployability
score also helps, as it
reduces the impact of
failures and allows for
easier recovery.



Layered Architecture Pipeline Architecture Service Based
Architecture Style

Event-Driven
Architecture Style

Space Based Microservices
Architecture

Performance

Modularity

Layered architecture
avoids some of the costs
associated with distributed
architecture. However, the
lack of parallel processing,
closed layering, and the
sinkhole architecture
anti-pattern lock in its
overall performance.

The use of pipes for
communication between
filters can introduce
latency. Performance
degradation can scale
linearly with the number of
filters in the path, leading
to worse performance than
tightly integrated
monolithic designs.

In some cases, creating
parallel pipelines allows
multiple stages to work on
different data segments
concurrently. This option
leads to a medium overall
score for performance.

The overhead of
inter-service
communication and
potential latency
introduced by network
calls between services
negatively impacts the
performance of this
architecture style.

On the other hand, the
distributed nature of the
services presents
opportunities for parallel
processing, leading to a
medium overall score.

Asynchronous
communications combined
with highly parallel
processing leads to a high
score for performance.

Performance is another
core strength of this
architecture. Parallel
processing and
in-memory caches for
reading data lead to a
high-performance
score.

The performance of this
architecture suffers due
to the high degree of
inter-service
communication, which
increases the latency of
a request.

The modularity is low
modularity as each layer is
built and deployed as part
of the monolith. The layers
are not standalone
*modules* and are not
reusable.

Even though the overall
application is monolithic,
the filters are typically built
as separate modules and
thus help with the
modularity score of this
architecture.

This architecture style
promotes the separation
of concerns, making it
easier to develop,
maintain, and scale
individual services
independently, leading to
a high score on
modularity.

EDA encourages
modularity by decoupling
components, allowing them
to evolve independently.

The components within
space-based
architecture are built
and deployed as
independent,
self-contained units.
Often, off-the-shelf
components are used
as sub-components of
the virtualized
middleware, helping the
modularity of the overall
system.

The microservice
architecture is highly
modular by definition.
The system is built up of
small, independently
developed, and
maintained services,
leading to a high
modularity score.



Layered Architecture Pipeline Architecture Service Based
Architecture Style

Event-Driven
Architecture Style

Space Based Microservices
Architecture

Extensibility

Testability

The extensibility score is
low due to low modularity
and deployability. New
functionality has to be
added by changing and
redeploying the entire
application.

We can add additional
functionality via additional
filter and transformer
nodes, which makes it
easier to add new paths of
processing within this
architecture. However, this
cannot be done
dynamically due to the
monolithic nature of this
architecture, resulting in a
medium score.

The service-based
architecture gets a
medium on extensibility.
On the plus side, new
functionality is added by
building new services
without impacting existing
services. On the negative
side, the services are
coarse-grained, which
means often adding new
functionality requires
modifying and
redeploying existing
services which hurts the
score.

Adding new features
through existing or new
event processors is
relatively straightforward,
particularly in the broker
topology. The architecture
makes it easy to add,
modify or remove
components without a
major impact on the overall
system, leading to a high
rating for extensibility.

The architecture's data
partitioning and parallel
processing capabilities
make it easier to
accommodate new
data-intensive tasks or
additional processing
requirements.

Similarly, the reliance of
this architecture on
message-passing or
event-driven
communication
between components
makes it easier to build
and integrate new
functionality.

As the services are
granular and
independent, adding
new functionality
becomes easy. Often,
new workflows can be
added by simply
combining existing
services. Updating an
existing service limits the
scope of the change,
making it easy to test
and deploy.

Given the monolithic
nature of this architecture,
even a simple change
often requires running the
entire test suite before
deployment, which is time
consuming and lowers the
testability of this
architecture.

The fact that the filters can
be built as independent
modules helps with the
testability of this
architecture. However, the
score is pegged as a
medium due to the
monolith nature and low
deployability.

This architecture scores
high on testability as high
modularity limits the
scope of the domain for a
given service, and high
deployability means that
frequent deployments are
less risky.

Testing individual
components can be
straightforward, but testing
interactions between
components (e.g., event
flow) can be more
challenging due to the
asynchronous and
nondeterministic event
flows.

Testing individual
components can be
straightforward, but
testing interactions
between the nodes and
ensuring data
consistency across
nodes is challenging.

Microservices can be
tested independently,
allowing for more
focused and efficient
testing of individual
components.



Layered Architecture Pipeline Architecture Service Based
Architecture Style

Event-Driven
Architecture Style

Space Based Microservices
Architecture

Simplicity

Overall Cost

Simplicity is one of the
strengths of this
architecture. This
architecture is easy to
understand, and the
concept of layering code is
familiar to all software
engineers. Often, each
layer grows organically
due to code organization
best practices. Finally, due
to its monolithic nature,
this architecture does not
have to deal with the
complexities associated
with distributed
architectures.

The pipeline architecture
simplifies the design of
individual stages, making
it conceptually easy to
understand.

As a distributed
architecture,
service-based
architecture is more
complex than monolithic
architecture. However,
this is one of the most
straightforward
distributed architectures,
leading to a medium
overall rating.

EDA can simplify the
overall design of a system
by decoupling components.
However, the
asynchronous and
distributed nature of the
architecture can introduce
complexity in
understanding event flows
and handling failures.

Space-based
architecture is a highly
complex architecture
style due to caching
and eventual
consistency of the
primary data store,
which is the ultimate
system of record.

While microservices can
simplify the design of
individual services, the
overall architecture is
highly complex due to
inter-service
communication, data
consistency, and
coordination.

Cost is another advantage
of this architectural style.
Its simplicity, low barrier to
entry, and familiarity make
it relatively low-cost to
build and maintain.

Pipeline architecture can
reduce development and
maintenance costs
through modularity and
extensibility. Due to its
monolithic nature, it is
relatively easy to build and
maintain, which helps with
its costs.

All distributed
architectures have higher
costs than monolithic
architectures due to
higher complexity and
more resource usage.
Specifically, distributed
architectures increase
infrastructure and
operational costs due to
the need for managing
and maintaining multiple
services, load balancing,
and monitoring.

High modularity and
extensibility help with the
overall maintenance costs
of this architecture.
However, the need for
message brokers and
managing distributed
components increases
operational and
infrastructure costs.

Compared to other
architecture styles,
space-based
architecture is
expensive, primarily
due to infrastructure
costs associated with
licensing fees and
managing and
maintaining multiple
nodes.

Microservices can
reduce development and
maintenance costs by
enabling modularity and
extensibility. However,
they may increase
infrastructure and
operational costs due to
the need for managing
and maintaining multiple
services, load balancing,
and monitoring.


